The evolution of unconditional cooperation is one of the fundamental problems in science. A new solution is proposed to solve this puzzle. We treat this issue with an evolutionary model in which agents play the Prisoner's Dilemma on signed networks. The topology is allowed to co-evolve with relational signs as well as with agent strategies. We introduce a strategy that is conditional on the emotional content embedded in network signs. We show that this strategy acts as a catalyst and creates favorable conditions for the spread of unconditional cooperation. In line with the literature, we found evidence that the evolution of cooperation most likely occurs in networks with relatively high chances of rewiring and with low likelihood of strategy adoption. While a low likelihood of rewiring enhances cooperation, a very high likelihood seems to limit its diffusion. Furthermore, unlike in nonsigned networks, cooperation becomes more prevalent in denser topologies. © 2014 World Scientific Publishing Company.

Emotional strategies as catalysts for cooperation in signed networks

Simone RIGHI;
2014-01-01

Abstract

The evolution of unconditional cooperation is one of the fundamental problems in science. A new solution is proposed to solve this puzzle. We treat this issue with an evolutionary model in which agents play the Prisoner's Dilemma on signed networks. The topology is allowed to co-evolve with relational signs as well as with agent strategies. We introduce a strategy that is conditional on the emotional content embedded in network signs. We show that this strategy acts as a catalyst and creates favorable conditions for the spread of unconditional cooperation. In line with the literature, we found evidence that the evolution of cooperation most likely occurs in networks with relatively high chances of rewiring and with low likelihood of strategy adoption. While a low likelihood of rewiring enhances cooperation, a very high likelihood seems to limit its diffusion. Furthermore, unlike in nonsigned networks, cooperation becomes more prevalent in denser topologies. © 2014 World Scientific Publishing Company.
File in questo prodotto:
File Dimensione Formato  
ACS_Takacs.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 529.3 kB
Formato Adobe PDF
529.3 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3744157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact