Luminescence Boltzmann thermometry is one of the most reliable techniques used to locally probe temperature in a contactless mode. However, to date, there is no report on cryogenic thermometers based on the highly sensitive and reliable Boltzmann-based 4T2 → 4A2/2E → 4A2 emission ratio of Cr3+. On the basis of structural information of the local HfO6 octahedral site we demonstrated the potential of the CaHfO3:Cr3+ system by combining deep theoretical and experimental investigation. The material exhibits simultaneous emission from both the 2E and 4T2 excited states, following the Boltzmann law in a cryogenic temperature range of 40-150 K. The promising thermometric performance corroborates the potential of CaHfO3:Cr3+ as a Boltzmann cryothermometer, being characterized by a high relative sensitivity (∼2%·K-1 at 40 K) and exceptional thermal resolution (0.045-0.77 K in the 40-150 K range). Moreover, by exploiting the flexibility of the 4T2-2E energy gap controlled by the crystal field of the local octahedral site, the design proposed herein could be expanded to develop new Cr3+-doped cryogenic thermometers.

Pushing the Limit of Boltzmann Distribution in Cr3+-Doped CaHfO3 for Cryogenic Thermometry

Back M.
;
2020-01-01

Abstract

Luminescence Boltzmann thermometry is one of the most reliable techniques used to locally probe temperature in a contactless mode. However, to date, there is no report on cryogenic thermometers based on the highly sensitive and reliable Boltzmann-based 4T2 → 4A2/2E → 4A2 emission ratio of Cr3+. On the basis of structural information of the local HfO6 octahedral site we demonstrated the potential of the CaHfO3:Cr3+ system by combining deep theoretical and experimental investigation. The material exhibits simultaneous emission from both the 2E and 4T2 excited states, following the Boltzmann law in a cryogenic temperature range of 40-150 K. The promising thermometric performance corroborates the potential of CaHfO3:Cr3+ as a Boltzmann cryothermometer, being characterized by a high relative sensitivity (∼2%·K-1 at 40 K) and exceptional thermal resolution (0.045-0.77 K in the 40-150 K range). Moreover, by exploiting the flexibility of the 4T2-2E energy gap controlled by the crystal field of the local octahedral site, the design proposed herein could be expanded to develop new Cr3+-doped cryogenic thermometers.
File in questo prodotto:
File Dimensione Formato  
2020 BACK UEDA ACSApplMaterInterf Cr3+ CaHfO3 Cryothermometer.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3743310
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 111
social impact