In the framework of precision medicine, we investigate the similarity of diabetic kidney disease (DKD) patients through longitudinal data clusters. Starting with insights from category theory, we build patients’ clusters according to the shapes of their trajectories, adopting the Fréchet distance. We group patients according to their behavior of the estimated glomerular filtration rate (eGFR), obtaining informative mean curves. Behavior pattern recognition can shed light on individualized treatments.

Clustering longitudinal data with category theory for diabetic kidney disease

Maria Mannone
;
Veronica Distefano;Claudio Silvestri;Irene Poli
2021-01-01

Abstract

In the framework of precision medicine, we investigate the similarity of diabetic kidney disease (DKD) patients through longitudinal data clusters. Starting with insights from category theory, we build patients’ clusters according to the shapes of their trajectories, adopting the Fréchet distance. We group patients according to their behavior of the estimated glomerular filtration rate (eGFR), obtaining informative mean curves. Behavior pattern recognition can shed light on individualized treatments.
2021
Scientific Meeting of the Classification and Data Analysis Group
File in questo prodotto:
File Dimensione Formato  
Cladag2021_publisher_version.pdf

non disponibili

Descrizione: Versione editore
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 301.29 kB
Formato Adobe PDF
301.29 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3743270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact