Despite appealing supercapacitive properties, the flexible asymmetric supercapacitor devices (FASCs) are still suffering from low mass loading and limited operating voltage, leading to unsatisfactory energy densities. Herein, we introduced a high-voltage anodic electro-deposition process (AED) which is a novel avenue enabling the synthesis of hierarchical MnO2 on activated carbon cloth (H-MnO2/ACC). Interestingly, the concomitant activation of carbon cloth substrate is found to be beneficial to improve the conductivity and hydrophilic nature of our novel electrode. A FASC based on H-MnO2/ACC-300 and reduced carbon cloth (RCC) was assembled using a mixed ionic liquid gel (ionogel) electrolyte. Benefiting from highly conductive paths derived from intimately attached fiber-MnO2 interfaces, hierarchically interpenetrated lamella MnO2 porosity and concentric MnO2 interlayer voids, as well as the merits of ionic liquid, the resultant FASC delivers an output voltage as high as 4 V and an impressive volumetric energy density of 3.82 mWh/cm3. Furthermore, the optimized H-MnO2/ACC-300 electrode with high mass loading can even retain 94.2% of initial capacitance upon 5000 cycles in 1 M Na2SO4. The unique H-MnO2/ACC can aid in the rational design towards flexible electronic devices with high mass loading and this synthetic strategy opens up enormous possibilities for the fabrication of electrodeposited materials.

Hierarchical MnO2/activated carbon cloth electrode prepared by synchronized electrochemical activation and oxidation for flexible asymmetric supercapacitors

Tofik Ahmed Shifa.
Writing – Original Draft Preparation
;
2019-01-01

Abstract

Despite appealing supercapacitive properties, the flexible asymmetric supercapacitor devices (FASCs) are still suffering from low mass loading and limited operating voltage, leading to unsatisfactory energy densities. Herein, we introduced a high-voltage anodic electro-deposition process (AED) which is a novel avenue enabling the synthesis of hierarchical MnO2 on activated carbon cloth (H-MnO2/ACC). Interestingly, the concomitant activation of carbon cloth substrate is found to be beneficial to improve the conductivity and hydrophilic nature of our novel electrode. A FASC based on H-MnO2/ACC-300 and reduced carbon cloth (RCC) was assembled using a mixed ionic liquid gel (ionogel) electrolyte. Benefiting from highly conductive paths derived from intimately attached fiber-MnO2 interfaces, hierarchically interpenetrated lamella MnO2 porosity and concentric MnO2 interlayer voids, as well as the merits of ionic liquid, the resultant FASC delivers an output voltage as high as 4 V and an impressive volumetric energy density of 3.82 mWh/cm3. Furthermore, the optimized H-MnO2/ACC-300 electrode with high mass loading can even retain 94.2% of initial capacitance upon 5000 cycles in 1 M Na2SO4. The unique H-MnO2/ACC can aid in the rational design towards flexible electronic devices with high mass loading and this synthetic strategy opens up enormous possibilities for the fabrication of electrodeposited materials.
File in questo prodotto:
File Dimensione Formato  
paper 8.pdf

accesso aperto

Descrizione: MnO2/activated carbon: supercapacitors
Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3742835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 91
social impact