We perform ultrafast pump-probe measurements on a nanometer-thick crystalline Bi-doped yttrium iron garnet film with perpendicular magnetic anisotropy. Tuning the photon energy of the pump laser pulses above and below the material’s band gap, we trigger ultrafast optical and spin dynamics via both one- and two-photon absorption. Contrary to the common scenario, the optically induced excitation induces an increase up to 20% of the ferromagnetic resonance frequency of the material. We explain this unexpected result in terms of a modification of the magnetic anisotropy caused by a long-lived photo-induced strain, which transiently and reversibly modifies the magnetoelastic coupling in the material. Our results disclose the possibility to optically increase the magnetic eigenfrequency in nanometer-thick magnets.

Optical Frequency Up-Conversion of the Ferromagnetic Resonance in an Ultrathin Garnet Mediated by Magnetoelastic Coupling

Bonetti, Stefano
2021-01-01

Abstract

We perform ultrafast pump-probe measurements on a nanometer-thick crystalline Bi-doped yttrium iron garnet film with perpendicular magnetic anisotropy. Tuning the photon energy of the pump laser pulses above and below the material’s band gap, we trigger ultrafast optical and spin dynamics via both one- and two-photon absorption. Contrary to the common scenario, the optically induced excitation induces an increase up to 20% of the ferromagnetic resonance frequency of the material. We explain this unexpected result in terms of a modification of the magnetic anisotropy caused by a long-lived photo-induced strain, which transiently and reversibly modifies the magnetoelastic coupling in the material. Our results disclose the possibility to optically increase the magnetic eigenfrequency in nanometer-thick magnets.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3742201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact