Sol-gel glasses in quaternary silica–sodium–calcium–phosphorous systems have been synthesized using a rotary evaporator for rapid drying without ageing. This novel fast drying method drastically decreases the total drying and ageing time from several weeks to only 1 hour, thus overcoming a serious drawback in sol-gel preparation procedures for bioglasses. This work investigates the bioactivity behavior of two glasses synthesized by this fast method, with Ca:P ratios of 1.5, and 1.67. X-ray diffraction (XRD), Inductive coupled plasma, Fourier-transform infrared, and Raman spectroscopy were used to confirm the bioactivity of the synthesized powders. MAS-NMR was also used to assess the degree of silica polymerization. The composition with a higher Ca:P = 1.67 ratio showed better bioactivity in comparison to the one with Ca:P = 1.5, which exhibited little bio-response with up to 4 weeks of immersion in SBF (simulated body fluid). It was also found that an orbital agitation rate of 120 rpm favors the interfacial bio-mineralization reactions, promoting the formation of a crystalline hydroxyapatite (HAp) layer at the surface of the (Ca:P = 1.67) composition after 2 weeks immersion in SBF. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 510–520, 2018.

Synthesis and bioactivity assessment of high silica content quaternary glasses with Ca: P ratios of 1.5 and 1.67, made by a rapid sol-gel process

Pullar R. C.
2018-01-01

Abstract

Sol-gel glasses in quaternary silica–sodium–calcium–phosphorous systems have been synthesized using a rotary evaporator for rapid drying without ageing. This novel fast drying method drastically decreases the total drying and ageing time from several weeks to only 1 hour, thus overcoming a serious drawback in sol-gel preparation procedures for bioglasses. This work investigates the bioactivity behavior of two glasses synthesized by this fast method, with Ca:P ratios of 1.5, and 1.67. X-ray diffraction (XRD), Inductive coupled plasma, Fourier-transform infrared, and Raman spectroscopy were used to confirm the bioactivity of the synthesized powders. MAS-NMR was also used to assess the degree of silica polymerization. The composition with a higher Ca:P = 1.67 ratio showed better bioactivity in comparison to the one with Ca:P = 1.5, which exhibited little bio-response with up to 4 weeks of immersion in SBF (simulated body fluid). It was also found that an orbital agitation rate of 120 rpm favors the interfacial bio-mineralization reactions, promoting the formation of a crystalline hydroxyapatite (HAp) layer at the surface of the (Ca:P = 1.67) composition after 2 weeks immersion in SBF. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 510–520, 2018.
File in questo prodotto:
File Dimensione Formato  
106JBiomedMatRes510.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 925 kB
Formato Adobe PDF
925 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3740263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact