Rare earth elements (REEs) are gaining growing attention in environmental and ecotoxicological studies due to their economic relevance, wide range of applications and increasing environmental concentrations. Among REEs, special consideration should be given to Gadolinium (Gd), whose wide exploitation as a magnetic resonance imaging (MRI) contrast agent is enhancing the risk of its occurrence in aquatic environments and impacts on aquatic organisms. A promising approach for water decontamination from REEs is sorption, namely through the use of macroalgae and in particular Ulva lactuca that already proved to be an efficient biosorbent for several chemical elements. Therefore, the present study aimed to evaluate the toxicity of Gd, comparing the biochemical effects induced by this element in the presence or absence of algae. Using the bivalve species Mytilus galloprovincialis, Gd toxicity was evaluated by assessing changes on mussels’ metabolic capacity and oxidative status. Results clearly showed the toxicity of Gd but further revealed the capacity of U. lactuca to prevent injuries to M. galloprovincialis, mainly reducing the levels of Gd in water and thus the bioaccumulation and toxicity of this element by the mussels. The results will advance the state of the art not only regarding the effects of REEs but also with regard to the role of algae in accumulation of metals and protection of aquatic organisms, generating new insights on water safety towards aquatic wildlife and highlighting the possibility for resources recovery.
How Ulva lactuca can influence the impacts induced by the rare earth element Gadolinium in Mytilus galloprovincialis? The role of macroalgae in water safety towards marine wildlife
Trapasso, Giacomo;Chiesa, Stefania;
2021-01-01
Abstract
Rare earth elements (REEs) are gaining growing attention in environmental and ecotoxicological studies due to their economic relevance, wide range of applications and increasing environmental concentrations. Among REEs, special consideration should be given to Gadolinium (Gd), whose wide exploitation as a magnetic resonance imaging (MRI) contrast agent is enhancing the risk of its occurrence in aquatic environments and impacts on aquatic organisms. A promising approach for water decontamination from REEs is sorption, namely through the use of macroalgae and in particular Ulva lactuca that already proved to be an efficient biosorbent for several chemical elements. Therefore, the present study aimed to evaluate the toxicity of Gd, comparing the biochemical effects induced by this element in the presence or absence of algae. Using the bivalve species Mytilus galloprovincialis, Gd toxicity was evaluated by assessing changes on mussels’ metabolic capacity and oxidative status. Results clearly showed the toxicity of Gd but further revealed the capacity of U. lactuca to prevent injuries to M. galloprovincialis, mainly reducing the levels of Gd in water and thus the bioaccumulation and toxicity of this element by the mussels. The results will advance the state of the art not only regarding the effects of REEs but also with regard to the role of algae in accumulation of metals and protection of aquatic organisms, generating new insights on water safety towards aquatic wildlife and highlighting the possibility for resources recovery.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.