This work reports a simple and safe, but powerful, route to depollute lead-containing aqueous solutions. Inorganic polymer foams (cm-size) were used as bulk-type adsorbents. The influence of the specimens' porosity and activator molarity on the foams' physical properties and on their lead extraction ability was studied. Then, the best performing samples were deeply evaluated as lead adsorbents by studying the impact of pH, lead concentration, contact time, ionic strength and solution volume. Lead sorption kinetics is strongly affected by the pollutant concentration, pH and the solution ionic strength. Under the most favourable conditions the foams showed an impressive removal capacity (105.9 mg/g at pH 5, 23 °C, C0 = 800 ppm, deionised water), surpassing all other reported values on the use of bulk-type inorganic polymers. The foams’ lead uptake is 2.3 times higher than the previous best performing bulk-type specimens (mm-size spheres), and sorption is 12.5–15 times faster. The foams can be easily regenerated using mild acidic conditions, and then reused as adsorbent, suggesting that the main adsorption mechanism is ion exchange.

Highly efficient lead extraction from aqueous solutions using inorganic polymer foams derived from biomass fly ash and metakaolin

Pullar R. C.;
2020-01-01

Abstract

This work reports a simple and safe, but powerful, route to depollute lead-containing aqueous solutions. Inorganic polymer foams (cm-size) were used as bulk-type adsorbents. The influence of the specimens' porosity and activator molarity on the foams' physical properties and on their lead extraction ability was studied. Then, the best performing samples were deeply evaluated as lead adsorbents by studying the impact of pH, lead concentration, contact time, ionic strength and solution volume. Lead sorption kinetics is strongly affected by the pollutant concentration, pH and the solution ionic strength. Under the most favourable conditions the foams showed an impressive removal capacity (105.9 mg/g at pH 5, 23 °C, C0 = 800 ppm, deionised water), surpassing all other reported values on the use of bulk-type inorganic polymers. The foams’ lead uptake is 2.3 times higher than the previous best performing bulk-type specimens (mm-size spheres), and sorption is 12.5–15 times faster. The foams can be easily regenerated using mild acidic conditions, and then reused as adsorbent, suggesting that the main adsorption mechanism is ion exchange.
File in questo prodotto:
File Dimensione Formato  
272JEnvironManage111049.pdf

Open Access dal 15/07/2021

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 7.08 MB
Formato Adobe PDF
7.08 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3740026
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact