In this Opinion, we address some of the most important results obtained electrochemically in the area of intramolecular electron transfer (ET). The focus is on freely diffusing molecular systems in which a donor D and an acceptor A are separated by a well-defined bridge B (D-B-A systems). B can be a saturated spacer, a delocalized bridge, or the more complex peptide backbones. As to the acceptors, the selected examples encompass species that can be charged reversibly but a special emphasis is on ETs associated with the concerted cleavage of a sigma bond (dissociative ETs). Our goal is to showcase the essential background, the most appropriate electrochemical tools and methodologies, and a series of selected examples where molecular electrochemistry has provided invaluable information on the mechanisms of intramolecular ET and electronic communication through bridges.
Electrochemically Induced Electron Transfer Through Molecular Bridges
Polo, Federico;Maran, Flavio
2021-01-01
Abstract
In this Opinion, we address some of the most important results obtained electrochemically in the area of intramolecular electron transfer (ET). The focus is on freely diffusing molecular systems in which a donor D and an acceptor A are separated by a well-defined bridge B (D-B-A systems). B can be a saturated spacer, a delocalized bridge, or the more complex peptide backbones. As to the acceptors, the selected examples encompass species that can be charged reversibly but a special emphasis is on ETs associated with the concerted cleavage of a sigma bond (dissociative ETs). Our goal is to showcase the essential background, the most appropriate electrochemical tools and methodologies, and a series of selected examples where molecular electrochemistry has provided invaluable information on the mechanisms of intramolecular ET and electronic communication through bridges.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2451910321000144-main.pdf
non disponibili
Descrizione: Manoscritto
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.