A well‑known property of linear resistive electrical networks is that the current distribution minimizes the total dissipated power. When the circuit includes resistors with nonlinear monotonic characteristic, the current distribution minimizes in general a different functional. We show that, if the nonlinear characteristic is a threshold‑like function and the current generator is concentrated in a single point, as in the case of lightning or dielectric discharge, then the current flow is concentrated along a single path, which is a minimum path to the ground with respect to the threshold. We also propose a dynamic model that explains and qualitatively reproduces the lightning transient behavior: initial generation of several plasma branches and subsequent dismissal of all branches but the one reaching the ground first, which is the optimal one.

A well-known property of linear resistive electrical networks is that the current distribution minimizes the total dissipated power. When the circuit includes resistors with nonlinear monotonic characteristic, the current distribution minimizes in general a different functional. We show that, if the nonlinear characteristic is a threshold-like function and the current generator is concentrated in a single point, as in the case of lightning or dielectric discharge, then the current flow is concentrated along a single path, which is a minimum path to the ground with respect to the threshold. We also propose a dynamic model that explains and qualitatively reproduces the lightning transient behavior: initial generation of several plasma branches and subsequent dismissal of all branches but the one reaching the ground first, which is the optimal one.

A threshold mechanism ensures minimum‑path flow in lightning discharge

Raffaele Pesenti
2021-01-01

Abstract

A well-known property of linear resistive electrical networks is that the current distribution minimizes the total dissipated power. When the circuit includes resistors with nonlinear monotonic characteristic, the current distribution minimizes in general a different functional. We show that, if the nonlinear characteristic is a threshold-like function and the current generator is concentrated in a single point, as in the case of lightning or dielectric discharge, then the current flow is concentrated along a single path, which is a minimum path to the ground with respect to the threshold. We also propose a dynamic model that explains and qualitatively reproduces the lightning transient behavior: initial generation of several plasma branches and subsequent dismissal of all branches but the one reaching the ground first, which is the optimal one.
2021
11
File in questo prodotto:
File Dimensione Formato  
41598_2020_79463_MOESM1_ESM.pdf

non disponibili

Descrizione: Post-print dell'autore
Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 213.63 kB
Formato Adobe PDF
213.63 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3733961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact