Background: Cholera was introduced into Haiti in 2010. Since then, more than 820 000 cases and nearly 10 000 deaths have been reported. Oral cholera vaccine (OCV) is safe and effective, but has not been seen as a primary tool for cholera elimination due to a limited period of protection and constrained supplies. Regionally, epidemic cholera is contained to the island of Hispaniola, and the lowest numbers of cases since the epidemic began were reported in 2019. Hence, Haiti may represent a unique opportunity to eliminate cholera with OCV. Methods: In this modelling study, we assessed the probability of elimination, time to elimination, and percentage of cases averted with OCV campaign scenarios in Haiti through simulations from four modelling teams. For a 10-year period from January 19, 2019, to Jan 13, 2029, we compared a no vaccination scenario with five OCV campaign scenarios that differed in geographical scope, coverage, and rollout duration. Teams used weekly department-level reports of suspected cholera cases from the Haiti Ministry of Public Health and Population to calibrate the models and used common vaccine-related assumptions, but other model features were determined independently. Findings: Among campaigns with the same vaccination coverage (70% fully vaccinated), the median probability of elimination after 5 years was 0–18% for no vaccination, 0–33% for 2-year campaigns focused in the two departments with the highest historical incidence, 0–72% for three-department campaigns, and 35–100% for nationwide campaigns. Two-department campaigns averted a median of 12–58% of infections, three-department campaigns averted 29–80% of infections, and national campaigns averted 58–95% of infections. Extending the national campaign to a 5-year rollout (compared to a 2-year rollout), reduced the probability of elimination to 0–95% and the proportion of cases averted to 37–86%. Interpretation: Models suggest that the probability of achieving zero transmission of Vibrio cholerae in Haiti with current methods of control is low, and that bolder action is needed to promote elimination of cholera from the region. Large-scale cholera vaccination campaigns in Haiti would offer the opportunity to synchronise nationwide immunity, providing near-term population protection while improvements to water and sanitation promote long-term cholera elimination. Funding: Bill & Melinda Gates Foundation, Global Good Fund, Institute for Disease Modeling, Swiss National Science Foundation, and US National Institutes of Health.

Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study

Pasetto D.;
2020-01-01

Abstract

Background: Cholera was introduced into Haiti in 2010. Since then, more than 820 000 cases and nearly 10 000 deaths have been reported. Oral cholera vaccine (OCV) is safe and effective, but has not been seen as a primary tool for cholera elimination due to a limited period of protection and constrained supplies. Regionally, epidemic cholera is contained to the island of Hispaniola, and the lowest numbers of cases since the epidemic began were reported in 2019. Hence, Haiti may represent a unique opportunity to eliminate cholera with OCV. Methods: In this modelling study, we assessed the probability of elimination, time to elimination, and percentage of cases averted with OCV campaign scenarios in Haiti through simulations from four modelling teams. For a 10-year period from January 19, 2019, to Jan 13, 2029, we compared a no vaccination scenario with five OCV campaign scenarios that differed in geographical scope, coverage, and rollout duration. Teams used weekly department-level reports of suspected cholera cases from the Haiti Ministry of Public Health and Population to calibrate the models and used common vaccine-related assumptions, but other model features were determined independently. Findings: Among campaigns with the same vaccination coverage (70% fully vaccinated), the median probability of elimination after 5 years was 0–18% for no vaccination, 0–33% for 2-year campaigns focused in the two departments with the highest historical incidence, 0–72% for three-department campaigns, and 35–100% for nationwide campaigns. Two-department campaigns averted a median of 12–58% of infections, three-department campaigns averted 29–80% of infections, and national campaigns averted 58–95% of infections. Extending the national campaign to a 5-year rollout (compared to a 2-year rollout), reduced the probability of elimination to 0–95% and the proportion of cases averted to 37–86%. Interpretation: Models suggest that the probability of achieving zero transmission of Vibrio cholerae in Haiti with current methods of control is low, and that bolder action is needed to promote elimination of cholera from the region. Large-scale cholera vaccination campaigns in Haiti would offer the opportunity to synchronise nationwide immunity, providing near-term population protection while improvements to water and sanitation promote long-term cholera elimination. Funding: Bill & Melinda Gates Foundation, Global Good Fund, Institute for Disease Modeling, Swiss National Science Foundation, and US National Institutes of Health.
File in questo prodotto:
File Dimensione Formato  
2020_Lee_LancetGH.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3729852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 3
social impact