We propose a methodology to leverage machine learning (ML) for the detection of web application vulnerabilities. We use it in the design of Mitch, the first ML solution for the black-box detection of cross-site request forgery vulnerabilities. Finally, we show the effectiveness of Mitch on real software.
Machine Learning for Web Vulnerability Detection: The Case of Cross-Site Request Forgery
Calzavara S.;Focardi R.;Rabitti A.;
2020-01-01
Abstract
We propose a methodology to leverage machine learning (ML) for the detection of web application vulnerabilities. We use it in the design of Mitch, the first ML solution for the black-box detection of cross-site request forgery vulnerabilities. Finally, we show the effectiveness of Mitch on real software.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
spmag20.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
374.98 kB
Formato
Adobe PDF
|
374.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.