We introduce a class of positive definite preconditioners for the solution of large symmetric indefinite linear systems or sequences of such systems, in optimization frameworks. The preconditioners are iteratively constructed by collecting information on a reduced eigenspace of the indefinite matrix by means of a Krylov-subspace solver. A spectral analysis of the preconditioned matrix shows the clustering of some eigenvalues and possibly the nonexpansion of its spectrum. Extensive numerical experimentation is carried out on standard difficult linear systems and by embedding the class of preconditioners within truncated Newton methods for large-scale unconstrained optimization (the issue of major interest). Although the Krylov-based method may provide modest information on matrix eigenspaces, the results obtained show that the proposed preconditioners lead to substantial improvements in terms of efficiency and robustness, particularly on very large nonconvex problems.

A Class of Approximate Inverse Preconditioners Based on Krylov-Subspace Methods for Large-Scale Nonconvex Optimization

Al-Baali, Mehiddin
Membro del Collaboration Group
;
Caliciotti, Andrea
Membro del Collaboration Group
;
Fasano, Giovanni;
2020-01-01

Abstract

We introduce a class of positive definite preconditioners for the solution of large symmetric indefinite linear systems or sequences of such systems, in optimization frameworks. The preconditioners are iteratively constructed by collecting information on a reduced eigenspace of the indefinite matrix by means of a Krylov-subspace solver. A spectral analysis of the preconditioned matrix shows the clustering of some eigenvalues and possibly the nonexpansion of its spectrum. Extensive numerical experimentation is carried out on standard difficult linear systems and by embedding the class of preconditioners within truncated Newton methods for large-scale unconstrained optimization (the issue of major interest). Although the Krylov-based method may provide modest information on matrix eigenspaces, the results obtained show that the proposed preconditioners lead to substantial improvements in terms of efficiency and robustness, particularly on very large nonconvex problems.
2020
30
File in questo prodotto:
File Dimensione Formato  
19m1256907.pdf

non disponibili

Descrizione: Articolo pubblicato finale
Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 692.28 kB
Formato Adobe PDF
692.28 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3728920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact