Real-world social and economic networks typically display a number of particular topological properties, such as a giant connected component, a broad degree distribution, the small-world property and the presence of communities of densely interconnected nodes. Several models, including ensembles of networks, also known in social science as Exponential Random Graphs, have been proposed with the aim of reproducing each of these properties in isolation. Here, we define a generalized ensemble of graphs by introducing the concept of graph temperature, controlling the degree of topological optimization of a network. We consider the temperature-dependent version of both existing and novel models and show that all the aforementioned topological properties can be simultaneously understood as the natural outcomes of an optimized, low-temperature topology. We also show that seemingly different graph models, as well as techniques used to extract information from real networks are all found to be particular low-temperature cases of the same generalized formalism. One such technique allows us to extend our approach to real weighted networks. Our results suggest that a low graph temperature might be a ubiquitous property of real socio-economic networks, placing conditions on the diffusion of information across these systems. © 2013 by the authors.

Low-temperature behaviour of social and economic networks

Caldarelli G.
2013-01-01

Abstract

Real-world social and economic networks typically display a number of particular topological properties, such as a giant connected component, a broad degree distribution, the small-world property and the presence of communities of densely interconnected nodes. Several models, including ensembles of networks, also known in social science as Exponential Random Graphs, have been proposed with the aim of reproducing each of these properties in isolation. Here, we define a generalized ensemble of graphs by introducing the concept of graph temperature, controlling the degree of topological optimization of a network. We consider the temperature-dependent version of both existing and novel models and show that all the aforementioned topological properties can be simultaneously understood as the natural outcomes of an optimized, low-temperature topology. We also show that seemingly different graph models, as well as techniques used to extract information from real networks are all found to be particular low-temperature cases of the same generalized formalism. One such technique allows us to extend our approach to real weighted networks. Our results suggest that a low graph temperature might be a ubiquitous property of real socio-economic networks, placing conditions on the diffusion of information across these systems. © 2013 by the authors.
2013
15
File in questo prodotto:
File Dimensione Formato  
entropy-15-03238-v2.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 477.42 kB
Formato Adobe PDF
477.42 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3728601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact