We use the Born model for the energy of elastic networks to simulate ''directed'' fracture growth. We define directed fractures as crack patterns showing a preferential evolution direction imposed by the type of stress and boundary conditions applied. This type of fracture allows a more realistic description of some kinds of experimental cracks and presents several advantages in order to distinguish between the various growth regimes. By choosing this growth geometry it is also possible to use without ambiguity the box-counting method to obtain the fractal dimension for different subsets of the patterns and for a wide range of the internal parameters of the model. We find a continuous dependence of the fractal dimension of the whole patterns and of their backbones on the ratio between the central- and noncentral-force contributions. For the chemical distance we find a one-dimensional behavior independent of the relevant parameters, which seems to be a common feature for fractal growth processes. © 1994 The American Physical Society.

Fractal and topological properties of directed fractures

Caldarelli G.;
1994-01-01

Abstract

We use the Born model for the energy of elastic networks to simulate ''directed'' fracture growth. We define directed fractures as crack patterns showing a preferential evolution direction imposed by the type of stress and boundary conditions applied. This type of fracture allows a more realistic description of some kinds of experimental cracks and presents several advantages in order to distinguish between the various growth regimes. By choosing this growth geometry it is also possible to use without ambiguity the box-counting method to obtain the fractal dimension for different subsets of the patterns and for a wide range of the internal parameters of the model. We find a continuous dependence of the fractal dimension of the whole patterns and of their backbones on the ratio between the central- and noncentral-force contributions. For the chemical distance we find a one-dimensional behavior independent of the relevant parameters, which seems to be a common feature for fractal growth processes. © 1994 The American Physical Society.
1994
49
File in questo prodotto:
File Dimensione Formato  
PRE2673.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 629.65 kB
Formato Adobe PDF
629.65 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3728516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact