Relational data watermarking techniques using virtual primary key schemes try to avoid compromising watermark detection due to the deletion or replacement of the relation's primary key. Nevertheless, these techniques face the limitations that bring high redundancy of the generated set of virtual primary keys, which often compromises the quality of the embedded watermark. As a solution to this problem, this paper proposes double fragmentation of the watermark by using the existing redundancy in the set of virtual primary keys. This way, we guarantee the right identification of the watermark despite the deletion of any of the attributes of the relation. The experiments carried out to validate our proposal show an increment between 81.04% and 99.05% of detected marks with respect to previous solutions found in the literature. Furthermore, we found out that our approach takes advantage of the redundancy present in the set of virtual primary keys. Concerning the computational complexity of the solution, we performed a set of scalability tests that show the linear behavior of our approach with respect to the processes runtime and the number of tuples involved, making it feasible to use no matter the amount of data to be protected.

Relational data watermarking techniques using virtual primary key schemes try to avoid compromising watermark detection due to the deletion or replacement of the relation's primary key. Nevertheless, these techniques face the limitations that bring high redundancy of the generated set of virtual primary keys, which often compromises the quality of the embedded watermark. As a solution to this problem, this paper proposes double fragmentation of the watermark by using the existing redundancy in the set of virtual primary keys. This way, we guarantee the right identification of the watermark despite the deletion of any of the attributes of the relation. The experiments carried out to validate our proposal show an increment between 81.04% and 99.05% of detected marks with respect to previous solutions found in the literature. Furthermore, we found out that our approach takes advantage of the redundancy present in the set of virtual primary keys. Concerning the computational complexity of the solution, we performed a set of scalability tests that show the linear behavior of our approach with respect to the processes runtime and the number of tuples involved, making it feasible to use no matter the amount of data to be protected.

A Double Fragmentation Approach for Improving Virtual Primary Key-Based Watermark Synchronization

Perez Gort M. L.;Cortesi A.;
2020-01-01

Abstract

Relational data watermarking techniques using virtual primary key schemes try to avoid compromising watermark detection due to the deletion or replacement of the relation's primary key. Nevertheless, these techniques face the limitations that bring high redundancy of the generated set of virtual primary keys, which often compromises the quality of the embedded watermark. As a solution to this problem, this paper proposes double fragmentation of the watermark by using the existing redundancy in the set of virtual primary keys. This way, we guarantee the right identification of the watermark despite the deletion of any of the attributes of the relation. The experiments carried out to validate our proposal show an increment between 81.04% and 99.05% of detected marks with respect to previous solutions found in the literature. Furthermore, we found out that our approach takes advantage of the redundancy present in the set of virtual primary keys. Concerning the computational complexity of the solution, we performed a set of scalability tests that show the linear behavior of our approach with respect to the processes runtime and the number of tuples involved, making it feasible to use no matter the amount of data to be protected.
2020
8
File in questo prodotto:
File Dimensione Formato  
ieee_access_2020.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso gratuito (solo visione)
Dimensione 4.83 MB
Formato Adobe PDF
4.83 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3725552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact