Carbon dioxide concentration level is reaching a non-returning point. Carbon capture technologies are immature and short-term actions are necessary. The conversion of CO2 into methanol is a technical challenge. Commercial copper-zinc-alumina catalysts convert maximum 7% carbon dioxide in syngas at high pressures (5 MPa to 10 MPa) and moderate temperatures (473 K to 573 K) into methanol. However, there are not records on the synthesis of methanol at low pressure (P<2.5MPa) and without a large excess of hydrogen in the feed. Here, we tested three new catalysts prepared by co-precipitation of copper, zinc and aluminum nitrates (CZA), with strontium, magnesium or calcium as basic promoters to enhance CO2 conversion to methanol. We discussed the microstructure of the catalysts according to the supersaturation of the relative carbonates formed during the co-precipitation synthesis. Compared to the benchmark, the sample doped with Ca showed higher carbon conversion with all the feed compositions tested (syngas, synthetic biosyngas and CO2 with H2). CZA doped with Sr is inactive in this reaction.

Low pressure conversion of CO2 to methanol over Cu/Zn/Al catalysts. The effect of Mg, Ca and Sr as basic promoters

M. Signoretto;F. Menegazzo;
2020

Abstract

Carbon dioxide concentration level is reaching a non-returning point. Carbon capture technologies are immature and short-term actions are necessary. The conversion of CO2 into methanol is a technical challenge. Commercial copper-zinc-alumina catalysts convert maximum 7% carbon dioxide in syngas at high pressures (5 MPa to 10 MPa) and moderate temperatures (473 K to 573 K) into methanol. However, there are not records on the synthesis of methanol at low pressure (P<2.5MPa) and without a large excess of hydrogen in the feed. Here, we tested three new catalysts prepared by co-precipitation of copper, zinc and aluminum nitrates (CZA), with strontium, magnesium or calcium as basic promoters to enhance CO2 conversion to methanol. We discussed the microstructure of the catalysts according to the supersaturation of the relative carbonates formed during the co-precipitation synthesis. Compared to the benchmark, the sample doped with Ca showed higher carbon conversion with all the feed compositions tested (syngas, synthetic biosyngas and CO2 with H2). CZA doped with Sr is inactive in this reaction.
File in questo prodotto:
File Dimensione Formato  
Manuscript (2).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 6.3 MB
Formato Adobe PDF
6.3 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3725357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact