In the field of nanomaterials, multifunctional nanosystems play a prominent role in many applications as new magnetically recoverable catalysts, information processing, fuel cells, efficient bio/nanosensors, and nanomedicine. Aiming at the obtainment of new nanomaterials for biotechnological applications such as biosensors or theragnostic systems, we present a multifunctional system able to merge different properties in only one nanotool. The system is prepared by loading the pores of mesoporous zirconia nanoparticles with CoFe2O4, by a wet impregnation method, further modifying the surface of the material with bis(phosphonic acid) to load gold nanoparticles, produced by laser ablation. The obtained nanocomposite functionalized with a SERS probe represents a specific example of a magnetoplasmonic nanosystem. The results show the efficacy of the strategy of exploiting mesoporous zirconia nanoparticles for obtaining magnetoplasmonic nanotools.
In the field of nanomaterials, multifunctional nanosystems play a prominent role in many applications as new magnetically recoverable catalysts, information processing, fuel cells, efficient bio/nanosensors, and nanomedicine. Aiming at the obtainment of new nanomaterials for biotechnological applications such as biosensors or theragnostic systems, we present a multifunctional system able to merge different properties in only one nanotool. The system is prepared by loading the pores of mesoporous zirconia nanoparticles with CoFe2O4, by a wet impregnation method, further modifying the surface of the material with bis(phosphonic acid) to load gold nanoparticles, produced by laser ablation. The obtained nanocomposite functionalized with a SERS probe represents a specific example of a magnetoplasmonic nanosystem. The results show the efficacy of the strategy of exploiting mesoporous zirconia nanoparticles for obtaining magnetoplasmonic nanotools.
Autori: | Pietro Riello (Corresponding) | |
Data di pubblicazione: | 2020 | |
Titolo: | Zirconia-Based Magnetoplasmonic Nanocomposites: A New Nanotool for Magnetic-Guided Separations with SERS Identification | |
Rivista: | ACS APPLIED NANO MATERIALS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1021/acsanm.9b01982 | |
Volume: | 3 | |
Appare nelle tipologie: | 2.1 Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2020 ACSApplNanoMaterials.pdf | Documento in Post-print | Accesso gratuito (solo visione) | Open Access Visualizza/Apri |