In the field of nanomaterials, multifunctional nanosystems play a prominent role in many applications as new magnetically recoverable catalysts, information processing, fuel cells, efficient bio/nanosensors, and nanomedicine. Aiming at the obtainment of new nanomaterials for biotechnological applications such as biosensors or theragnostic systems, we present a multifunctional system able to merge different properties in only one nanotool. The system is prepared by loading the pores of mesoporous zirconia nanoparticles with CoFe2O4, by a wet impregnation method, further modifying the surface of the material with bis(phosphonic acid) to load gold nanoparticles, produced by laser ablation. The obtained nanocomposite functionalized with a SERS probe represents a specific example of a magnetoplasmonic nanosystem. The results show the efficacy of the strategy of exploiting mesoporous zirconia nanoparticles for obtaining magnetoplasmonic nanotools.

In the field of nanomaterials, multifunctional nanosystems play a prominent role in many applications as new magnetically recoverable catalysts, information processing, fuel cells, efficient bio/nanosensors, and nanomedicine. Aiming at the obtainment of new nanomaterials for biotechnological applications such as biosensors or theragnostic systems, we present a multifunctional system able to merge different properties in only one nanotool. The system is prepared by loading the pores of mesoporous zirconia nanoparticles with CoFe2O4, by a wet impregnation method, further modifying the surface of the material with bis(phosphonic acid) to load gold nanoparticles, produced by laser ablation. The obtained nanocomposite functionalized with a SERS probe represents a specific example of a magnetoplasmonic nanosystem. The results show the efficacy of the strategy of exploiting mesoporous zirconia nanoparticles for obtaining magnetoplasmonic nanotools.

Zirconia-Based Magnetoplasmonic Nanocomposites: A New Nanotool for Magnetic-Guided Separations with SERS Identification

Anna Del Tedesco;Gabriele Sponchia;Khohinur Hossain;Alessandro Scarso;Moreno Meneghetti;Alvise Benedetti;Pietro Riello
2020

Abstract

In the field of nanomaterials, multifunctional nanosystems play a prominent role in many applications as new magnetically recoverable catalysts, information processing, fuel cells, efficient bio/nanosensors, and nanomedicine. Aiming at the obtainment of new nanomaterials for biotechnological applications such as biosensors or theragnostic systems, we present a multifunctional system able to merge different properties in only one nanotool. The system is prepared by loading the pores of mesoporous zirconia nanoparticles with CoFe2O4, by a wet impregnation method, further modifying the surface of the material with bis(phosphonic acid) to load gold nanoparticles, produced by laser ablation. The obtained nanocomposite functionalized with a SERS probe represents a specific example of a magnetoplasmonic nanosystem. The results show the efficacy of the strategy of exploiting mesoporous zirconia nanoparticles for obtaining magnetoplasmonic nanotools.
File in questo prodotto:
File Dimensione Formato  
2020 ACSApplNanoMaterials.pdf

embargo fino al 01/04/2022

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 5.19 MB
Formato Adobe PDF
5.19 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3725091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact