In the omic era, one of the main aims is to discover groups of functionally related genes that drive the difference between different conditions. To this end, a plethora of potentially useful multivariate statistical approaches has been proposed, but their evaluation is hindered by the absence of a gold standard. Here, we propose a method for simulating biological data - gene expression, RPKM/FPKM or protein abundances - from two conditions, namely, a reference condition and a perturbation of it. Our approach is built upon probabilistic graphical models and is thus especially suited for testing topological approaches.

simPATHy: a new method for simulating data from perturbed biological PATHways

Djordjilovic V.
Writing – Original Draft Preparation
;
2017-01-01

Abstract

In the omic era, one of the main aims is to discover groups of functionally related genes that drive the difference between different conditions. To this end, a plethora of potentially useful multivariate statistical approaches has been proposed, but their evaluation is hindered by the absence of a gold standard. Here, we propose a method for simulating biological data - gene expression, RPKM/FPKM or protein abundances - from two conditions, namely, a reference condition and a perturbation of it. Our approach is built upon probabilistic graphical models and is thus especially suited for testing topological approaches.
2017
33
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3724543
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact