In this paper, we consider a nonlinear traction problem for the Lam'e equations in a periodically perforated domain obtained by making in $mathbbR^n$ a periodic set of holes, each of them of size proportional to $epsilon$. Under suitable assumptions, we know that there exists a family of solutions $\u(epsilon,cdot)_epsilonin]0,epsilon_1[$ with a prescribed limiting behavior when $epsilon$ approaches $0$. Then we investigate the energy integral of $u(epsilon,cdot)$ as $epsilon$ tends to $0$, and we prove that such integral can be continued real analytically for negative values of $epsilon$.
Autori: | |
Data di pubblicazione: | 2014 |
Titolo: | Energy integral of a nonlinear traction problem in a singularly perturbed periodically perforated domain |
Titolo del libro: | Complex Analysis and Potential Theory with applications, Proceedings of the 9th ISAAC Congress |
Appare nelle tipologie: | 4.1 Articolo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
20140125_nltracelperenergy_ISAAC-web.pdf | N/A | Riservato |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.