We consider a sufficiently regular bounded open connected subset $Omega$ of $mathbbR^n$ such that $0 in Omega$ and such that $mathbbR^n setminus clOmega$ is connected. Then we choose a point $w in ]0,1[^n$. If $epsilon$ is a small positive real number, then we define the periodically perforated domain $T(epsilon) equiv mathbbR^nsetminus cup_z in mathbbZ^ncl(w+epsilon Omega +z)$. For each small positive $epsilon$, we introduce a particular Dirichlet problem for the Laplace operator in the set $T(epsilon)$. More precisely, we consider a Dirichlet condition on the boundary of the set $w+epsilon Omega$, and we denote the unique periodic solution of this problem by $u[epsilon]$. Then we show that (suitable restrictions of) $u[epsilon]$ can be continued real analytically in the parameter $epsilon$ around $epsilon=0$.
Autori: | MUSOLINO P. (Corresponding) |
Data di pubblicazione: | 2010 |
Titolo: | A Functional Analytic Approach for a Singularly Perturbed Dirichlet Problem for the Laplace Operator in a Periodically Perforated Domain |
Titolo del libro: | Numerical analysis and applied mathematics. International conference ofnumerical analysis and applied mathematics (ICNAAM 2010) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1063/1.3498645 |
Appare nelle tipologie: | 4.1 Articolo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
928_1.pdf | N/A | Riservato |