We consider a Neumann problem for the Poisson equation in the periodically perforated Euclidean space. Each periodic perforation has a size proportional to a positive parameter ε. For each positive and small ε, we denote by v(ε,·) a suitably normalized solution. Then we are interested to analyze the behavior of v(ε, ·) when ε is close to the degenerate value ε = 0, where the holes collapse to points. In particular we prove that if n ≥ 3, then v(ε, ·) can be expanded into a convergent series expansion of powers of ε and that if n = 2 then v(ε, ·) can be expanded into a convergent double series expansion of powers of ε and ε log ε. Our approach is based on potential theory and functional analysis and is alternative to those of asymptotic analysis.
We consider a Neumann problem for the Poisson equation in the periodically perforated Euclidean space. Each periodic perforation has a size proportional to a positive parameter ε. For each positive and small ε, we denote by a suitably normalized solution. Then we are interested to analyze the behavior of when ε is close to the degenerate value , where the holes collapse to points. In particular we prove that if , then can be expanded into a convergent series expansion of powers of ε and that if then can be expanded into a convergent double series expansion of powers of ε and . Our approach is based on potential theory and functional analysis and is alternative to those of asymptotic analysis.
A singularly perturbed Neumann problem for the Poisson equation in a periodically perforated domain. A functional analytic approach
Musolino Paolo
2016-01-01
Abstract
We consider a Neumann problem for the Poisson equation in the periodically perforated Euclidean space. Each periodic perforation has a size proportional to a positive parameter ε. For each positive and small ε, we denote by a suitably normalized solution. Then we are interested to analyze the behavior of when ε is close to the degenerate value , where the holes collapse to points. In particular we prove that if , then can be expanded into a convergent series expansion of powers of ε and that if then can be expanded into a convergent double series expansion of powers of ε and . Our approach is based on potential theory and functional analysis and is alternative to those of asymptotic analysis.File | Dimensione | Formato | |
---|---|---|---|
zamm-stplLanzaMusolino18dec14(preprint).pdf
non disponibili
Dimensione
337.51 kB
Formato
Adobe PDF
|
337.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.