In this paper we explore a unique, high-value spatio-temporal dataset that results from the fusion of three data sources: trajectories from fishing vessels (obtained from terrestrial Automatic Identification System, or AIS, data feed), the corresponding fish catch reports (i.e., the quantity and type of fish caught), and relevant environmental data. The result of that fusion is a set of semantic trajectories describing the fishing activities in Northern Adriatic Sea over two years. We present early results from an exploratory analysis of these semantic trajectories, as well as from initial predictive modeling using Machine Learning. Our goal is to predict the Catch Per Unit Effort (CPUE), an indicator of the fishing resources exploitation useful for fisheries management. Our predictive results are preliminary in both the temporal data horizon that we are able to explore and in the limited set of learning techniques that are employed on this task. We discuss several approaches that we plan to apply in the near future to learn from such data, evidence, and knowledge that will be useful for fisheries management. It is likely that other centers of intense fishing activities are in possession of similar data and could use the methods similar to the ones proposed here in their local context.
Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning
Pranovi F.;Raffaetà A.;Russo E.;Silvestri C.;Simeoni M.;Matwin S.
2020-01-01
Abstract
In this paper we explore a unique, high-value spatio-temporal dataset that results from the fusion of three data sources: trajectories from fishing vessels (obtained from terrestrial Automatic Identification System, or AIS, data feed), the corresponding fish catch reports (i.e., the quantity and type of fish caught), and relevant environmental data. The result of that fusion is a set of semantic trajectories describing the fishing activities in Northern Adriatic Sea over two years. We present early results from an exploratory analysis of these semantic trajectories, as well as from initial predictive modeling using Machine Learning. Our goal is to predict the Catch Per Unit Effort (CPUE), an indicator of the fishing resources exploitation useful for fisheries management. Our predictive results are preliminary in both the temporal data horizon that we are able to explore and in the limited set of learning techniques that are employed on this task. We discuss several approaches that we plan to apply in the near future to learn from such data, evidence, and knowledge that will be useful for fisheries management. It is likely that other centers of intense fishing activities are in possession of similar data and could use the methods similar to the ones proposed here in their local context.File | Dimensione | Formato | |
---|---|---|---|
Adibi2020_Chapter_PredictingFishingEffortAndCatc.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.