We consider a nonlinear Robin problem for the Poisson equation in an unbounded periodically perforated domain. The domain has a periodic structure, and the size of each cell is determined by a positive parameter δ. The relative size of each periodic perforation is determined by a positive parameter e. Under suitable assumptions, such a problem admits a family of solutions which depends on e and δ. We analyse the behaviour the energy integral of such a family as (e, δ) tends to (0, 0) by an approach that represents an alternative to asymptotic expansions and classical homogenization theory.
Autori: | |
Data di pubblicazione: | 2019 |
Titolo: | Asymptotic Behaviour of the Energy Integral of a Two-Parameter Homogenization Problem with Nonlinear Periodic Robin Boundary Conditions |
Rivista: | PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1017/S0013091518000858 |
Volume: | 62 |
Appare nelle tipologie: | 2.1 Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
ennorobom29oct18.pdf | Bozza finale postreferaggio | Documento in Post-print | Accesso chiuso-personale | Riservato |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.