The paper presents the topic modeling technique known as Latent Dirichlet Allocation (LDA), a form of text-mining aiming at discovering the hidden (latent) thematic structure in large archives of documents. By applying LDA to the full text of the economics articles stored in the JSTOR database, we show how to construct a map of the discipline over time, and illustrate the potentialities of the technique for the study of the shifting structure of economics in a time of (possible) fragmentation.

What topic modeling could reveal about the evolution of economics

NUCCIO, Massimiliano
2018

Abstract

The paper presents the topic modeling technique known as Latent Dirichlet Allocation (LDA), a form of text-mining aiming at discovering the hidden (latent) thematic structure in large archives of documents. By applying LDA to the full text of the economics articles stored in the JSTOR database, we show how to construct a map of the discipline over time, and illustrate the potentialities of the technique for the study of the shifting structure of economics in a time of (possible) fragmentation.
File in questo prodotto:
File Dimensione Formato  
What topic modeling could reveal about the evolution of economics.pdf

non disponibili

Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3722428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact