The paper presents the topic modeling technique known as Latent Dirichlet Allocation (LDA), a form of text-mining aiming at discovering the hidden (latent) thematic structure in large archives of documents. By applying LDA to the full text of the economics articles stored in the JSTOR database, we show how to construct a map of the discipline over time, and illustrate the potentialities of the technique for the study of the shifting structure of economics in a time of (possible) fragmentation.
Autori: | |
Data di pubblicazione: | 2018 |
Titolo: | What topic modeling could reveal about the evolution of economics |
Rivista: | JOURNAL OF ECONOMIC METHODOLOGY |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/1350178X.2018.1529215 |
Volume: | 25 |
Appare nelle tipologie: | 2.1 Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
What topic modeling could reveal about the evolution of economics.pdf | N/A | Riservato |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.