We study the asymptotic behaviour of solutions to a scalar conservation law with a mean curvature's type diffusion, focusing our attention to the stability/metastability properties of the steady state. In particular, we show the existence of a unique steady state that slowly converges to its asymptotic configuration, with a speed rate which is exponentially small with respect to the viscosity parameter epsilon; the rigorous results are also validated by numerical simulations.
Autori: | Strani M. (Corresponding) | |
Data di pubblicazione: | 2019 | |
Titolo: | A note on the slow convergence of solutions to conservation laws with mean curvature diffusions | |
Rivista: | COMPLEX VARIABLES AND ELLIPTIC EQUATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/17476933.2019.1701669 | |
Volume: | N/D | |
Appare nelle tipologie: | 2.1 Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.