Tidal inlets are extremely dynamic environments that are often strongly modified by anthropogenic intervention. In this study, we describe the rapid evolution of a highly humanimpacted tidal inlet, studied through repeated high-resolution multibeam surveys and geomorphometric analysis. We document the rapid change induced by new hard coastal structures built to protect the historical city of Venice (Italy). A new breakwater erected between 2011 and 2013 induced the formation of large scour holes with the consequent erosion of about 170 x 103 ± 15.6% m3 of sediment until 2016. The construction of a new island in the middle of the inlet and the restriction of the inlet channel caused a general change of the inlet sedimentary regime from depositional to erosive with a net sediment loss of about 612 x 103 ± 42.7% m3, a reduction of the dune field area by more than 50% in about five years, and a coarsening in the sediment distribution. Our results give new insight on the tidal inlet resilience to changes, distinguishing two different phases in its recent evolution: (i) a very rapid response (from 2011 to 2013) of the seafloor morphology with scour-hole erosion at the new breakwater tips at a rate of about 45x103 m3/year and the disappearing of dune fields at a rate of 104x103 m2/year; and (ii) a general slowdown of the erosive processes from 2013 to 2016. Nevertheless, the erosion continues at the breakwater, though at a reduced rate, possibly representing a threat to the hard structure. In view of global mean sea level rise and consequent proliferation of hard structures along the coast all over the world, the combined use of very high resolution multibeam surveys and repeatable geomorphometric analysis proposed in this study will be crucial for the monitoring and future management of coastal environments.

Tidal inlet seafloor changes induced by recently built hard structures

Emanuela Molinaroli;Stefano Fogarin;
2019-01-01

Abstract

Tidal inlets are extremely dynamic environments that are often strongly modified by anthropogenic intervention. In this study, we describe the rapid evolution of a highly humanimpacted tidal inlet, studied through repeated high-resolution multibeam surveys and geomorphometric analysis. We document the rapid change induced by new hard coastal structures built to protect the historical city of Venice (Italy). A new breakwater erected between 2011 and 2013 induced the formation of large scour holes with the consequent erosion of about 170 x 103 ± 15.6% m3 of sediment until 2016. The construction of a new island in the middle of the inlet and the restriction of the inlet channel caused a general change of the inlet sedimentary regime from depositional to erosive with a net sediment loss of about 612 x 103 ± 42.7% m3, a reduction of the dune field area by more than 50% in about five years, and a coarsening in the sediment distribution. Our results give new insight on the tidal inlet resilience to changes, distinguishing two different phases in its recent evolution: (i) a very rapid response (from 2011 to 2013) of the seafloor morphology with scour-hole erosion at the new breakwater tips at a rate of about 45x103 m3/year and the disappearing of dune fields at a rate of 104x103 m2/year; and (ii) a general slowdown of the erosive processes from 2013 to 2016. Nevertheless, the erosion continues at the breakwater, though at a reduced rate, possibly representing a threat to the hard structure. In view of global mean sea level rise and consequent proliferation of hard structures along the coast all over the world, the combined use of very high resolution multibeam surveys and repeatable geomorphometric analysis proposed in this study will be crucial for the monitoring and future management of coastal environments.
2019
14
File in questo prodotto:
File Dimensione Formato  
Toso et el. PLOSONE 2019.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 4.61 MB
Formato Adobe PDF
4.61 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3719680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact