Microplastics pose a worldwide risk for the environment. Microplastic fibers, which are released during the household washing of synthetic fabrics, are a substantial percentage of microplastics in rivers and in oceans. A novel quantification and simultaneous identification of fiber polymers via Micro-FTIR (Fourier Transform Infrared Spectroscopy) was developed. Washing simulations with commercially available household products were performed and effluents were filtered either on GF/F filters (0.7 μm) or on Anodisc filter (0.2 μm), to gather even the smallest fibers. Furthermore, a novel purification procedure of effluents was developed. Subsequently, filters were analyzed also with the scanning electronic microscope (SEM) to confirm the width and length of fibers. This novel method is robust and replicable and it allows better quantification of fibers released and identification of fiber polymers with optimal matches (averagely 80%).
A novel method for purification, quantitative analysis and characterization of microplastic fibers using Micro-FTIR
Corami, Fabiana;ROSSO, BEATRICE;Gambaro, Andrea;Barbante, Carlo
2020-01-01
Abstract
Microplastics pose a worldwide risk for the environment. Microplastic fibers, which are released during the household washing of synthetic fabrics, are a substantial percentage of microplastics in rivers and in oceans. A novel quantification and simultaneous identification of fiber polymers via Micro-FTIR (Fourier Transform Infrared Spectroscopy) was developed. Washing simulations with commercially available household products were performed and effluents were filtered either on GF/F filters (0.7 μm) or on Anodisc filter (0.2 μm), to gather even the smallest fibers. Furthermore, a novel purification procedure of effluents was developed. Subsequently, filters were analyzed also with the scanning electronic microscope (SEM) to confirm the width and length of fibers. This novel method is robust and replicable and it allows better quantification of fibers released and identification of fiber polymers with optimal matches (averagely 80%).I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.