Although previous investigations of the trace elements in snow and ice from the Qinghai-Tibetan Plateau obtained interesting information about pollution from human activities on the plateau, most were based on traditional acidification methods. To emphasize the influence of the different sample-preparation methods on the records of trace elements and rare earth elements, snow samples were collected from glaciers on the Qinghai-Tibetan Plateau in China and prepared using two methods: traditional acidification and total digestion. Concentrations of 18 trace elements (Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li, Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), along with 14 rare earth elements (REEs: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y, and Th in the snow samples, were measured using inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). The results showed that the mass fraction of the trace elements (defined as ratio of concentration in the acid-leachable fraction to that in the digested sample) such as Mo, Ti, Al, Rb, and V, varied from 0.06 to 0.5. The mass fraction of other trace elements varied from about 0.6 to more than 0.9; those of the REEs, Y, and Th varied from 0.34 to 0.75. Lower mass fractions will lead to an overestimated contribution of other sources, especially human activities, and the underestimated fluxes of these trace elements (especially REEs, Y, and Th, as well as dust) if the REEs are used as the proxy for the crust dust. The two sample-preparation methods exhibited different REE normalized distribution patterns, REE ratios, and provenance-tracing results. The REE normalized distribution patterns and proxies in the digested samples are more reliable and integrated than those found in traditional acidification method for dust-provenance tracing.

Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications

BARBANTE
2017

Abstract

Although previous investigations of the trace elements in snow and ice from the Qinghai-Tibetan Plateau obtained interesting information about pollution from human activities on the plateau, most were based on traditional acidification methods. To emphasize the influence of the different sample-preparation methods on the records of trace elements and rare earth elements, snow samples were collected from glaciers on the Qinghai-Tibetan Plateau in China and prepared using two methods: traditional acidification and total digestion. Concentrations of 18 trace elements (Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li, Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), along with 14 rare earth elements (REEs: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y, and Th in the snow samples, were measured using inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). The results showed that the mass fraction of the trace elements (defined as ratio of concentration in the acid-leachable fraction to that in the digested sample) such as Mo, Ti, Al, Rb, and V, varied from 0.06 to 0.5. The mass fraction of other trace elements varied from about 0.6 to more than 0.9; those of the REEs, Y, and Th varied from 0.34 to 0.75. Lower mass fractions will lead to an overestimated contribution of other sources, especially human activities, and the underestimated fluxes of these trace elements (especially REEs, Y, and Th, as well as dust) if the REEs are used as the proxy for the crust dust. The two sample-preparation methods exhibited different REE normalized distribution patterns, REE ratios, and provenance-tracing results. The REE normalized distribution patterns and proxies in the digested samples are more reliable and integrated than those found in traditional acidification method for dust-provenance tracing.
File in questo prodotto:
File Dimensione Formato  
Li et al (2017) .pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 3.2 MB
Formato Adobe PDF
3.2 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3717188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact