In this paper we study the long time dynamics of the solutions to an initial-boundary value problem for a scalar conservation law with a saturating nonlinear diffusion. After discussing the existence of a unique stationary solution and its asymptotic stability, we focus our attention on the phenomenon of metastability, whereby the time-dependent solution develops into a layered function in a relatively short time and subsequently approaches a steady state in a very long time interval. Numerical simulations illustrate the results.
Autori: | Marta Strani (Corresponding) | |
Data di pubblicazione: | 2019 | |
Titolo: | Stability properties and dynamics of solutions to viscous conservation laws with mean curvature operator | |
Rivista: | JOURNAL OF EVOLUTION EQUATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00028-019-00528-2 | |
Volume: | N/D | |
Appare nelle tipologie: | 2.1 Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.