This paper describes the CoLing Lab system for the EVALITA 2014 SENTIment POLarity Classification (SENTIPOLC) task. Our system is based on a SVM classifier trained on the rich set of lexical, global and twitter-specific features described in these pages. Overall, our system reached a 0.63 weighted F-score on the test set provided by the task organizers.
The CoLing Lab system for Sentiment Polarity Classification of tweets
Lebani Gianluca;
2014-01-01
Abstract
This paper describes the CoLing Lab system for the EVALITA 2014 SENTIment POLarity Classification (SENTIPOLC) task. Our system is based on a SVM classifier trained on the rich set of lexical, global and twitter-specific features described in these pages. Overall, our system reached a 0.63 weighted F-score on the test set provided by the task organizers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CoLingLab_SentiPolC14.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
414.75 kB
Formato
Adobe PDF
|
414.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.