In probabilistic risk assessment, attention is often focused on the expected value of a risk metric. The sensitivity of this expectation to changes in the parameters of the distribution characterizing uncertainty in the inputs becomes of interest. Approaches based on differentiation encounter limitations when (i) distributional parameters are expressed in different units or (ii) the analyst wishes to transfer sensitivity insights from individual parameters to parameter groups, when alternating between different levels of a probabilistic safety assessment model. Moreover, the analyst may also wish to examine the effect of assuming independence among inputs. This work proposes an approach based on the differential importance measure, which solves these issues. Estimation aspects are discussed in detail, in particular the problem of obtaining all sensitivity measures from a single Monte Carlo sample, thus avoiding potentially costly model runs. The approach is illustrated through an analytical example, highlighting how it can be used to assess the impact of removing the independence assumption. An application to the probabilistic risk assessment model of the Advanced Test Reactor large loss of coolant accident sequence concludes the work.

Which parameters are important? Differential importance under uncertainty

Antoniano-Villalobos, Isadora;
2018

Abstract

In probabilistic risk assessment, attention is often focused on the expected value of a risk metric. The sensitivity of this expectation to changes in the parameters of the distribution characterizing uncertainty in the inputs becomes of interest. Approaches based on differentiation encounter limitations when (i) distributional parameters are expressed in different units or (ii) the analyst wishes to transfer sensitivity insights from individual parameters to parameter groups, when alternating between different levels of a probabilistic safety assessment model. Moreover, the analyst may also wish to examine the effect of assuming independence among inputs. This work proposes an approach based on the differential importance measure, which solves these issues. Estimation aspects are discussed in detail, in particular the problem of obtaining all sensitivity measures from a single Monte Carlo sample, thus avoiding potentially costly model runs. The approach is illustrated through an analytical example, highlighting how it can be used to assess the impact of removing the independence assumption. An application to the probabilistic risk assessment model of the Advanced Test Reactor large loss of coolant accident sequence concludes the work.
File in questo prodotto:
File Dimensione Formato  
SDIM_paper_risa-PostPrintNotice.pdf

embargo fino al 30/06/2020

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Antoniano-Borgonovo-Siriwardena(2018-RiskAnalysis-Final)SDIM.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 989.29 kB
Formato Adobe PDF
989.29 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3715523
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact