In this paper we analyse some bootstrap techniques to make inference in INAR(p) models. First of all, via Monte Carlo experiments we compare the performances of these methods when estimating the thinning parameters in INAR(p) models; we state the superiority ofmodel-based INARbootstrap approaches on block bootstrap in terms of low bias and Mean Square Error. Then we adopt themodel-based bootstrap methods to obtain coherent predictions and confidence intervals in order to avoid difficulty in deriving the distributional properties. Finally, we present an empirical application
Autori: | Margherita Gerolimetto (Corresponding) |
Data di pubblicazione: | 2019 |
Titolo: | Model-based INAR bootstrap for forecasting INAR(p) models |
Rivista: | COMPUTATIONAL STATISTICS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00180-019-00902-1 |
Volume: | N/D |
Appare nelle tipologie: | 2.1 Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Bisaglia_Gerolimetto_CS_2019.pdf | Versione dell'editore | Accesso chiuso-personale | Riservato |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.