We study the impact of the magnetic field angle on the oscillation frequency of a nanocontact spin torque oscillator (STO) in magnetic fields up to 2.1 T. A model based on a single nonlinear, nonpropagating spin wave mode is found to explain the experimental data. We observe oscillation frequencies as high as 46 GHz in high magnetic fields applied normal to the film plane, and we are able to extrapolate the maximum expected operating frequency to beyond 65 GHz for in-plane magnetic fields. The STO signal remains surprisingly strong at these conditions, which opens up for possible millimeter-wave applications.

Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz

Bonetti S;
2009

Abstract

We study the impact of the magnetic field angle on the oscillation frequency of a nanocontact spin torque oscillator (STO) in magnetic fields up to 2.1 T. A model based on a single nonlinear, nonpropagating spin wave mode is found to explain the experimental data. We observe oscillation frequencies as high as 46 GHz in high magnetic fields applied normal to the film plane, and we are able to extrapolate the maximum expected operating frequency to beyond 65 GHz for in-plane magnetic fields. The STO signal remains surprisingly strong at these conditions, which opens up for possible millimeter-wave applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3712225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 148
  • ???jsp.display-item.citation.isi??? 140
social impact