We explore the influence of the phase of localized plasmon resonances on the magneto-optical activity of nanoferromagnets. We demonstrate that these systems can be described as two orthogonal damped oscillators coupled by the spin-orbit interaction. We prove that only the spin-orbit induced transverse plasmon plays an active role on the magneto-optical properties by controlling the relative amplitude and phase lag between the two oscillators. Our theoretical predictions are fully confirmed by magneto-optical Kerr effect and optical extinction measurements in nanostructures of different size and shape.

Tuning the Magneto-Optical Response of Nanosize Ferromagnetic Ni Disks Using the Phase of Localized Plasmons

Bonetti S;
2013-01-01

Abstract

We explore the influence of the phase of localized plasmon resonances on the magneto-optical activity of nanoferromagnets. We demonstrate that these systems can be described as two orthogonal damped oscillators coupled by the spin-orbit interaction. We prove that only the spin-orbit induced transverse plasmon plays an active role on the magneto-optical properties by controlling the relative amplitude and phase lag between the two oscillators. Our theoretical predictions are fully confirmed by magneto-optical Kerr effect and optical extinction measurements in nanostructures of different size and shape.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3712167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 114
  • ???jsp.display-item.citation.isi??? 106
social impact