Direct manipulation of the atomic lattice using intense long-wavelength laser pulses has become a viable approach to create new states of matter in complex materials. Conventionally, a high-frequency vibrational mode is driven resonantly by a mid-infrared laser pulse and the lattice structure is modified through indirect coupling of this infrared-active phonon to other, lower-frequency lattice modulations. Here, we drive the lowest-frequency optical phonon in the prototypical transition metal oxide SrTiO 3 well into the anharmonic regime with an intense terahertz field. We show that it is possible to transfer energy to higher-frequency phonon modes through nonlinear coupling. Our observations are carried out by directly mapping the lattice response to the coherent drive field with femtosecond X-ray pulses, enabling direct visualization of the atomic displacements.

Terahertz-driven phonon upconversion in SrTiO 3

Bonetti, S.;
2019-01-01

Abstract

Direct manipulation of the atomic lattice using intense long-wavelength laser pulses has become a viable approach to create new states of matter in complex materials. Conventionally, a high-frequency vibrational mode is driven resonantly by a mid-infrared laser pulse and the lattice structure is modified through indirect coupling of this infrared-active phonon to other, lower-frequency lattice modulations. Here, we drive the lowest-frequency optical phonon in the prototypical transition metal oxide SrTiO 3 well into the anharmonic regime with an intense terahertz field. We show that it is possible to transfer energy to higher-frequency phonon modes through nonlinear coupling. Our observations are carried out by directly mapping the lattice response to the coherent drive field with femtosecond X-ray pulses, enabling direct visualization of the atomic displacements.
2019
15
File in questo prodotto:
File Dimensione Formato  
s41567-018-0408-1.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3712154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 141
  • ???jsp.display-item.citation.isi??? 128
social impact