Monoacylglycerol lipase (MAGL) is an attractive therapeutic target for many pathologies, including neurodegenerative diseases, cancer as well as chronic pain and inflammatory pathologies. The identification of reversible MAGL inhibitors, devoid of the side effects associated to prolonged MAGL inactivation, is a hot topic in medicinal chemistry. In this study, a novel phenyl(piperazin-1-yl)methanone inhibitor of MAGL was identified through a virtual screening protocol based on a fingerprint-driven consensus docking (CD) approach. Molecular modeling and preliminary structure-based hit optimization studies allowed the discovery of derivative 4, which showed an efficient reversible MAGL inhibition (IC 50 = 6.1 µM) and a promising antiproliferative activity on breast and ovarian cancer cell lines (IC 50 of 31–72 µM), thus representing a lead for the development of new and more potent reversible MAGL inhibitors. Moreover, the obtained results confirmed the reliability of the fingerprint-driven CD approach herein developed.

Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors

Rizzolio, Flavio;
2019-01-01

Abstract

Monoacylglycerol lipase (MAGL) is an attractive therapeutic target for many pathologies, including neurodegenerative diseases, cancer as well as chronic pain and inflammatory pathologies. The identification of reversible MAGL inhibitors, devoid of the side effects associated to prolonged MAGL inactivation, is a hot topic in medicinal chemistry. In this study, a novel phenyl(piperazin-1-yl)methanone inhibitor of MAGL was identified through a virtual screening protocol based on a fingerprint-driven consensus docking (CD) approach. Molecular modeling and preliminary structure-based hit optimization studies allowed the discovery of derivative 4, which showed an efficient reversible MAGL inhibition (IC 50 = 6.1 µM) and a promising antiproliferative activity on breast and ovarian cancer cell lines (IC 50 of 31–72 µM), thus representing a lead for the development of new and more potent reversible MAGL inhibitors. Moreover, the obtained results confirmed the reliability of the fingerprint-driven CD approach herein developed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3711936
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact