Formamide NH2CHO chemistry provides a unitary frame into which several pieces of the origin-of-life puzzle may be adjusted. Synthetic processes were uncovered which, starting from formamide and prebiotically easily available common catalysts, yield all the necessary nucleic bases precursors, including acyclonucleosides. Formamide allows phosphorylations and trans-phosphorylations, favours the micellar aggregation of surfactants and, most importantly, determines conditions in which the formation of nucleic polymers is thermodynamically favoured. In the detected conditions, the phosphoester bonds are more stable in the polymeric than in the monomeric form, thus allowing formation and survival of informational nucleic polymers. © 2006 Springer Science+Business Media, B.V.
About a formamide-based origin of informational polymers: Syntheses of nucleobases and favourable thermodynamic niches for early polymers
CRESTINI, Claudia
2006-01-01
Abstract
Formamide NH2CHO chemistry provides a unitary frame into which several pieces of the origin-of-life puzzle may be adjusted. Synthetic processes were uncovered which, starting from formamide and prebiotically easily available common catalysts, yield all the necessary nucleic bases precursors, including acyclonucleosides. Formamide allows phosphorylations and trans-phosphorylations, favours the micellar aggregation of surfactants and, most importantly, determines conditions in which the formation of nucleic polymers is thermodynamically favoured. In the detected conditions, the phosphoester bonds are more stable in the polymeric than in the monomeric form, thus allowing formation and survival of informational nucleic polymers. © 2006 Springer Science+Business Media, B.V.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.