The abiotic origin of genetic polymers faces two major problems: a prebiotically plausible polymerization mechanism and the maintenance of their polymerized state outside a cellular environment. The stabilizing action of borate on ribose having been reported, we have explored the possibility that borate minerals stabilize RNA. We observe that borate itself does not stabilize RNA. The analysis of a large panel of minerals tested in various physical-chemical conditions shows that in general no protection on RNA backbone is exerted, with the interesting exception of ludwigite (Mg2Fe3+BO5). Stability is a fundamental property of nucleic polymers and borate is an abundant component of the planet, hence the prebiotic interest of this analysis. © 2010 by the authors.
Borate minerals and RNA stability
CRESTINI, Claudia
2010-01-01
Abstract
The abiotic origin of genetic polymers faces two major problems: a prebiotically plausible polymerization mechanism and the maintenance of their polymerized state outside a cellular environment. The stabilizing action of borate on ribose having been reported, we have explored the possibility that borate minerals stabilize RNA. We observe that borate itself does not stabilize RNA. The analysis of a large panel of minerals tested in various physical-chemical conditions shows that in general no protection on RNA backbone is exerted, with the interesting exception of ludwigite (Mg2Fe3+BO5). Stability is a fundamental property of nucleic polymers and borate is an abundant component of the planet, hence the prebiotic interest of this analysis. © 2010 by the authors.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.