Statistical analysis of large and sparse graphs is a challenging problem in data science due to the high dimensionality and nonlinearity of the problem. This paper presents a fast and scalable algorithm for partitioning such graphs into disjoint groups based on observed graph distances from a set of reference nodes. The resulting partition provides a low-dimensional approximation of the full distance matrix which helps to reveal global structural properties of the graph using only small samples of the distance matrix. The presented algorithm is inspired by the information-theoretic minimum description principle. We investigate the performance of this algorithm for selected real data sets and for synthetic graph data sets generated using stochastic block models and power-law random graphs, together with analytical considerations for sparse stochastic block models with bounded average degrees.

Analysis of large sparse graphs using regular decomposition of graph distance matrices

Fiorucci, Marco
2018

Abstract

Statistical analysis of large and sparse graphs is a challenging problem in data science due to the high dimensionality and nonlinearity of the problem. This paper presents a fast and scalable algorithm for partitioning such graphs into disjoint groups based on observed graph distances from a set of reference nodes. The resulting partition provides a low-dimensional approximation of the full distance matrix which helps to reveal global structural properties of the graph using only small samples of the distance matrix. The presented algorithm is inspired by the information-theoretic minimum description principle. We investigate the performance of this algorithm for selected real data sets and for synthetic graph data sets generated using stochastic block models and power-law random graphs, together with analytical considerations for sparse stochastic block models with bounded average degrees.
2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3710675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact