Several large flooding events in recent years have led to increased concerns that climate change may be affecting the risk of flooding. At-site tests assessing whether change can be detected in observed data are not very powerful and cannot fully differentiate between possible confounders. It is also difficult to detect fully climate-driven trends, and separate these from other anthropogenic impacts such as urbanisation. We propose a change in focus from detection only towards both detecting and attributing trends in peak river flows to large-scale climate drivers such as the North Atlantic Oscillation index. We focus on a set of near-natural “benchmark” catchments in Ireland in order to detect those non-human driven trends. In order to enhance our ability to detect a signal, we model all stations together in a Bayesian framework which is implemented through Stan.

Attribution of large-scale drivers of peak river flows in Ireland

Ilaria Prosdocimi
2018-01-01

Abstract

Several large flooding events in recent years have led to increased concerns that climate change may be affecting the risk of flooding. At-site tests assessing whether change can be detected in observed data are not very powerful and cannot fully differentiate between possible confounders. It is also difficult to detect fully climate-driven trends, and separate these from other anthropogenic impacts such as urbanisation. We propose a change in focus from detection only towards both detecting and attributing trends in peak river flows to large-scale climate drivers such as the North Atlantic Oscillation index. We focus on a set of near-natural “benchmark” catchments in Ireland in order to detect those non-human driven trends. In order to enhance our ability to detect a signal, we model all stations together in a Bayesian framework which is implemented through Stan.
2018
Proceedings of the 33rd International Workshop on Statistical Modelling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3710050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact