Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50ps temporal resolution and 35nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.
Direct observation and imaging of a spin-wave soliton with p-like symmetry
BONETTI, Stefano
;
2015-01-01
Abstract
Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50ps temporal resolution and 35nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.File | Dimensione | Formato | |
---|---|---|---|
ncomms9889.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
650.03 kB
Formato
Adobe PDF
|
650.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.