The development of sustainable yet efficient technologies to store solar light into high energy molecules, such as hydrocarbons and hydrogen, is a pivotal challenge in 21st century society. In the field of photocatalysis, a wide variety of chemical routes can be pursued to obtain solar fuels but the two most promising are carbon dioxide photoreduction and photoreforming of biomass-derived substrates. Despite their great potentialities, these technologies still need to be improved to represent a reliable alternative to traditional fuels, in terms of both catalyst design and photoreactor engineering. This review highlights the chemical fundamentals of different photocatalytic reactions for solar fuels production and provides a mechanistic insight on proposed reaction pathways. Also, possible cutting-edge strategies to obtain solar fuels are reported, focusing on how the chemical bases of the investigated reaction affect experimental choices.
Solar Fuels by Heterogeneous Photocatalysis: From Understanding Chemical Bases to Process Development
Alberto Olivo;Zanardo, Danny;Elena Ghedini;Federica Menegazzo;Michela Signoretto
2018-01-01
Abstract
The development of sustainable yet efficient technologies to store solar light into high energy molecules, such as hydrocarbons and hydrogen, is a pivotal challenge in 21st century society. In the field of photocatalysis, a wide variety of chemical routes can be pursued to obtain solar fuels but the two most promising are carbon dioxide photoreduction and photoreforming of biomass-derived substrates. Despite their great potentialities, these technologies still need to be improved to represent a reliable alternative to traditional fuels, in terms of both catalyst design and photoreactor engineering. This review highlights the chemical fundamentals of different photocatalytic reactions for solar fuels production and provides a mechanistic insight on proposed reaction pathways. Also, possible cutting-edge strategies to obtain solar fuels are reported, focusing on how the chemical bases of the investigated reaction affect experimental choices.File | Dimensione | Formato | |
---|---|---|---|
ChemEngineering-02-00042.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Dominio pubblico
Dimensione
1.89 MB
Formato
Adobe PDF
|
1.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.