This article discusses the Wade and Ghahramani’s (2018) paper on a new estimator for clustering structures based on the variation of information (VI) metric. The present discussion focuses on the estimation of concentration parameter of the Dirichlet process. In estimating the clustering structure, the concentration parameter is integrated out and the marginal posterior distribution of the random partition is used to evaluate the posterior loss. Here we propose to use the optimal VI for model selection.

Comment on Bayesian Cluster Analysis: Point Estimation and Credible Balls by Wade and Ghahramani

Casarin, Roberto;Tonellato, Stefano
2018-01-01

Abstract

This article discusses the Wade and Ghahramani’s (2018) paper on a new estimator for clustering structures based on the variation of information (VI) metric. The present discussion focuses on the estimation of concentration parameter of the Dirichlet process. In estimating the clustering structure, the concentration parameter is integrated out and the marginal posterior distribution of the random partition is used to evaluate the posterior loss. Here we propose to use the optimal VI for model selection.
2018
13
File in questo prodotto:
File Dimensione Formato  
BAcontr.pdf

accesso aperto

Descrizione: ba2018
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 323.41 kB
Formato Adobe PDF
323.41 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3704031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 98
social impact