The photocatalytic degradation of methylene blue (MB) dye has been performed under UV irradiation in aqueous suspension, employing photocatalysts based on Au (1.5 wt %) and AuCu (Au/Cu = 1, 2.0 wt %), and supported on SBA-15-ordered mesoporous silica, with and without titania (Si/Ti = 3), in order to evaluate the versatility of this mesoporous support in this type of reaction of great impact from the environmental point of view. Samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption at −196 ◦C, and X-ray photoelectron spectroscopy (XPS), so as to study their structural, optical, and chemical properties. All the prepared catalysts were found to be active in the test reaction. The bimetallic AuCu-based catalysts attained very high MB degradation values, in particular AuCu/SBA-15 titania-silica sample reached 100% of dye oxidation after the monitored reaction period (120 min).
Au and AuCu nanoparticles supported on SBA-15 ordered mesoporous titania-silica as catalysts for methylene blue photodegradation
Elisa Moretti
;Aldo Talon;Loretta Storaro;Enrique Rodríguez-Castellón;
2018-01-01
Abstract
The photocatalytic degradation of methylene blue (MB) dye has been performed under UV irradiation in aqueous suspension, employing photocatalysts based on Au (1.5 wt %) and AuCu (Au/Cu = 1, 2.0 wt %), and supported on SBA-15-ordered mesoporous silica, with and without titania (Si/Ti = 3), in order to evaluate the versatility of this mesoporous support in this type of reaction of great impact from the environmental point of view. Samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption at −196 ◦C, and X-ray photoelectron spectroscopy (XPS), so as to study their structural, optical, and chemical properties. All the prepared catalysts were found to be active in the test reaction. The bimetallic AuCu-based catalysts attained very high MB degradation values, in particular AuCu/SBA-15 titania-silica sample reached 100% of dye oxidation after the monitored reaction period (120 min).File | Dimensione | Formato | |
---|---|---|---|
Article published.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
5.61 MB
Formato
Adobe PDF
|
5.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.