Eu3+ doped CaF2 and SrF2 nanoparticles were synthesized through a facile hydrothermal technique, using citrate ions as capping agents and Na+ or K+ as charge compensator ions. A proper tuning of the reaction time can modulate the nanoparticle size, from few to several tens of nanometers. Analysis of EXAFS spectra indicate that the Eu3+ ions enter into the fluorite CaF2 and SrF2 structure as substitutional defects on the metal site. Laser site selective spectroscopy demonstrates that the Eu3+ ions are mainly accommodated in two sites with different symmetries. The relative site distribution for lanthanide ions depends on the nanoparticle size, and higher symmetry Eu3+ sites are prevalent for bigger nanoparticles. Eu3+ ions in high symmetry sites present lifetimes of the 5D0 level around 27 ms, among the longest lifetimes found in the literature for Eu3+ activated materials. As a proof of concept of possible use of the Eu3+ activated alkaline-earth fluoride nanoparticles in nanomedicine, the red luminescence generated by two-photon absorption using pulsed laser excitation at 790 nm (in the first biological window) has been detected. The long Eu3+ lifetimes suggest that the present nanomaterials can be interesting as luminescent probes in time-resolved fluorescence techniques in biomedical imaging (e.g., FLIM) where fast autofluorescence is a drawback to avoid.
Luminescence of Eu3+ Activated CaF2 and SrF2 Nanoparticles: Effect of the Particle Size and Codoping with Alkaline Ions
Canton, PatriziaMembro del Collaboration Group
;
2018-01-01
Abstract
Eu3+ doped CaF2 and SrF2 nanoparticles were synthesized through a facile hydrothermal technique, using citrate ions as capping agents and Na+ or K+ as charge compensator ions. A proper tuning of the reaction time can modulate the nanoparticle size, from few to several tens of nanometers. Analysis of EXAFS spectra indicate that the Eu3+ ions enter into the fluorite CaF2 and SrF2 structure as substitutional defects on the metal site. Laser site selective spectroscopy demonstrates that the Eu3+ ions are mainly accommodated in two sites with different symmetries. The relative site distribution for lanthanide ions depends on the nanoparticle size, and higher symmetry Eu3+ sites are prevalent for bigger nanoparticles. Eu3+ ions in high symmetry sites present lifetimes of the 5D0 level around 27 ms, among the longest lifetimes found in the literature for Eu3+ activated materials. As a proof of concept of possible use of the Eu3+ activated alkaline-earth fluoride nanoparticles in nanomedicine, the red luminescence generated by two-photon absorption using pulsed laser excitation at 790 nm (in the first biological window) has been detected. The long Eu3+ lifetimes suggest that the present nanomaterials can be interesting as luminescent probes in time-resolved fluorescence techniques in biomedical imaging (e.g., FLIM) where fast autofluorescence is a drawback to avoid.File | Dimensione | Formato | |
---|---|---|---|
Caf2_SrF2_Eu_v1.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Accesso chiuso-personale
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.