We describe sharply 2-transitive groups whose point stabilizer is a nilpotent {2,3}-group without elements of order 9 and, more generally, in which the third power of each element belongs to the FC-center. In particular, we will prove that these groups are finite.

On sharply 2-transitive groups with point stabilizer of exponent 2^n⋅3

Jabara Enrico
2018-01-01

Abstract

We describe sharply 2-transitive groups whose point stabilizer is a nilpotent {2,3}-group without elements of order 9 and, more generally, in which the third power of each element belongs to the FC-center. In particular, we will prove that these groups are finite.
File in questo prodotto:
File Dimensione Formato  
Jabara_Tra.pdf

Open Access dal 08/12/2020

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 416.89 kB
Formato Adobe PDF
416.89 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3694773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact