We describe sharply 2-transitive groups whose point stabilizer is a nilpotent {2,3}-group without elements of order 9 and, more generally, in which the third power of each element belongs to the FC-center. In particular, we will prove that these groups are finite.
On sharply 2-transitive groups with point stabilizer of exponent 2^n⋅3
Jabara Enrico
2018-01-01
Abstract
We describe sharply 2-transitive groups whose point stabilizer is a nilpotent {2,3}-group without elements of order 9 and, more generally, in which the third power of each element belongs to the FC-center. In particular, we will prove that these groups are finite.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Jabara_Tra.pdf
Open Access dal 08/12/2020
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
416.89 kB
Formato
Adobe PDF
|
416.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.