In this paper we extend the setting of irreversible dynamic monopolies (or shortly, dynamos) from two to more than two colors. The distributed protocol can be described as follows: let G be a simple connected graph where every node has a color from a finite ordered set C = {1,. . .,k} of colors. At each round, each node can increase its color by 1 according to the colors held by its neighbors. We are interested in the so called SCIM-dynamos, that is, subsets of nodes initially having color k leading all the nodes to recolor by k under our protocol. We show that there is a tradeoff between the size of a SCIM-dynamo and the size of C: if C is limited to two colors, our protocol coincides with the irreversible strong majority. Differently, increasing the number of colors employed permits to reduce the size of a SCIM-dynamo to that of a minimum simple majority dynamo. This gives rise to an inclusion hierarchy of dynamos from simple majority dynamos to strong majority dynamos. Our goal is to minimize the size of a SCIM-dynamo for a given G, and then to determine the minimum number of colors accordingly. In particular, given an m×. n torus, we show that there exists a special class of minimum size SCIM-dynamos for k≈. min(. m, n)/2.

An inclusion hierarchy of irreversible dynamos

BRUNETTI, SARA;Quattrociocchi, W.
2015-01-01

Abstract

In this paper we extend the setting of irreversible dynamic monopolies (or shortly, dynamos) from two to more than two colors. The distributed protocol can be described as follows: let G be a simple connected graph where every node has a color from a finite ordered set C = {1,. . .,k} of colors. At each round, each node can increase its color by 1 according to the colors held by its neighbors. We are interested in the so called SCIM-dynamos, that is, subsets of nodes initially having color k leading all the nodes to recolor by k under our protocol. We show that there is a tradeoff between the size of a SCIM-dynamo and the size of C: if C is limited to two colors, our protocol coincides with the irreversible strong majority. Differently, increasing the number of colors employed permits to reduce the size of a SCIM-dynamo to that of a minimum simple majority dynamo. This gives rise to an inclusion hierarchy of dynamos from simple majority dynamos to strong majority dynamos. Our goal is to minimize the size of a SCIM-dynamo for a given G, and then to determine the minimum number of colors accordingly. In particular, given an m×. n torus, we show that there exists a special class of minimum size SCIM-dynamos for k≈. min(. m, n)/2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3694093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact