Machine-learnt models based on additive ensembles of binary regression trees are currently deemed the best solution to address complex classification, regression, and ranking tasks. Evaluating these models is a computationally demanding task as it needs to traverse thousands of trees with hundreds of nodes each. The cost of traversing such large forests of trees significantly impacts their application to big and stream input data, when the time budget available for each prediction is limited to guarantee a given processing throughput. Document ranking in Web search is a typical example of this challenging scenario, where the exploitation of tree-based models to score query-document pairs, and finally rank lists of documents for each incoming query, is the state-of-art method for ranking (a.k.a. Learning-to-Rank). This paper presents QuickScorer, a novel algorithm for the traversal of huge decision trees ensembles that, thanks to a cache-and CPU-aware design, provides a similar to 9x speedup over best competitors.
Efficient Traversal of Large Ensembles of Decision Trees.
LUCCHESE, Claudio;ORLANDO, Salvatore;
2017-01-01
Abstract
Machine-learnt models based on additive ensembles of binary regression trees are currently deemed the best solution to address complex classification, regression, and ranking tasks. Evaluating these models is a computationally demanding task as it needs to traverse thousands of trees with hundreds of nodes each. The cost of traversing such large forests of trees significantly impacts their application to big and stream input data, when the time budget available for each prediction is limited to guarantee a given processing throughput. Document ranking in Web search is a typical example of this challenging scenario, where the exploitation of tree-based models to score query-document pairs, and finally rank lists of documents for each incoming query, is the state-of-art method for ranking (a.k.a. Learning-to-Rank). This paper presents QuickScorer, a novel algorithm for the traversal of huge decision trees ensembles that, thanks to a cache-and CPU-aware design, provides a similar to 9x speedup over best competitors.File | Dimensione | Formato | |
---|---|---|---|
qs-nectar.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Accesso chiuso-personale
Dimensione
329.51 kB
Formato
Adobe PDF
|
329.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.