Ranking query results effectively by considering user past behaviour and preferences is a primary concern for IR researchers both in academia and industry. In this context, LtR is widely believed to be the most effective solution to design ranking models that account for user-interaction features that have proved to remarkably impact on IR effectiveness. In this paper, we explore the possibility of integrating the user dynamic directly into the LtR algorithms. Specifically, we model with Markov chains the behaviour of users in scanning a ranked result list and we modify LambdaMart, a state-of-The-Art LtR algorithm, to exploit a new discount loss function calibrated on the proposed Markovian model of user dynamic. We evaluate the performance of the proposed approach on publicly available LtR datasets, finding that the improvements measured over the standard algorithm are statistically significant.
On Including the user dynamic in learning to rank
Ferro, Nicola;LUCCHESE, Claudio;
2017-01-01
Abstract
Ranking query results effectively by considering user past behaviour and preferences is a primary concern for IR researchers both in academia and industry. In this context, LtR is widely believed to be the most effective solution to design ranking models that account for user-interaction features that have proved to remarkably impact on IR effectiveness. In this paper, we explore the possibility of integrating the user dynamic directly into the LtR algorithms. Specifically, we model with Markov chains the behaviour of users in scanning a ranked result list and we modify LambdaMart, a state-of-The-Art LtR algorithm, to exploit a new discount loss function calibrated on the proposed Markovian model of user dynamic. We evaluate the performance of the proposed approach on publicly available LtR datasets, finding that the improvements measured over the standard algorithm are statistically significant.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.